Reminders of Formulas from single var
Generally

$$
\frac{d}{d x} a x^{3}=3 a x^{2}
$$

Were thinking of "̈ as a const but you could think of it as a var
\longrightarrow You could call it

$$
\frac{d}{d y}\left(y x^{3}\right)=3 y x^{2}
$$

Still y (or a) is sill i a constr be were diffing art x

But you can diff wry y:

$$
\frac{d}{d y}\left(y x^{3}\right)=x^{3}
$$

\rightarrow ie, if you plug in some const for x, then the eau true

$$
\begin{aligned}
& \text { eg } x=-1 \\
& \frac{d}{d y}(-y)=-1=(-1)^{3} \\
& \frac{\text { Cg }}{} \frac{d}{d y}(8 v)=8
\end{aligned}
$$

If you want to emphasize that x is const when you diff $w r t y$, you could call it "a" and write

$$
\frac{d}{d y}\left(y a^{3}\right)=a^{3}
$$

Another formula

$$
\begin{aligned}
& \frac{d}{d v} e^{a x}=a e^{a x} \\
& \frac{e q u i v a l e n+1 y}{d x} \\
& \frac{d}{d x}\left(e^{y x}\right)=\frac{d}{d x}\left(e^{x y}\right)=y e^{x y} \\
& \frac{d}{d y}\left(e^{x y}\right)=x e^{x y}
\end{aligned}
$$

In MV cole, when you nave multiple vars i diff writ one of them, we write ∂ instead of d.

50

$$
\frac{\partial}{\partial x} e^{x y}=y e^{x y}
$$

In generali, if $f(x, y)$ is afar of 2 vars, then
$\frac{\partial f}{\partial x}$ is what you get if you treat y as a ∂x canst $a_{n d}$ take a deriv. wry

$$
\begin{aligned}
& \left.\Rightarrow \frac{\partial f}{\partial x}\right|_{y=100}=\frac{d}{d x} \underbrace{f(x, 100)}_{\text {single var fen }} \\
& \text { eg } \quad f(x, y)=x \sin (y)+e^{x}+y \\
& \frac{\partial f}{\partial x}=\sin (y)+c^{x} \\
& \frac{\partial f}{\partial y}=x \cos (y)+1 \\
& \frac{\partial F}{\partial x} \neq \frac{\partial F}{\partial y} \\
& \text { "portion derluetiurs } \\
& \text { of } F^{\prime \prime}
\end{aligned}
$$

In 3 variables $f(x, y, z)$
then we have: $\frac{\partial f}{\partial x}, \frac{\partial f}{d y}, \frac{\partial f}{d z}$

$$
\begin{aligned}
& \text { eg } f(x, y, z)=x y z \\
& \frac{\partial F}{\partial x}=y z \quad \frac{\partial F}{\partial y}=x z \quad \frac{\partial F}{\partial z}=x y
\end{aligned}
$$

What if we differentiate mut times?

$$
\begin{gathered}
\frac{\partial^{2} f}{\partial x^{2}}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial}{\partial x}(y z)=0 \\
\frac{\partial^{2} f}{\partial y^{2}}=\frac{\partial^{2} f}{\partial z^{2}}=0 \\
\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial}{\partial x}(x z)=z \\
\frac{\partial^{2} f}{\partial y \partial x}=\frac{\partial}{\partial y}(y z)=z
\end{gathered}
$$

True in general
$\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial^{2} f}{\partial y \partial x}$ as long as the partial derivatives

In general, we only work w fens whose nth elerivatives exist and are continuous

Caveat: sometimes $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ are def'd but
not continuous serious properties falls

Def

$$
\frac{\partial^{2} f}{\partial x \partial y}=f x y \quad \frac{\partial^{2} f}{\partial y^{2}}=f_{y y}
$$

Exercise $x \sin y+e^{x}+y$

$$
\begin{array}{r}
\frac{\partial F}{\partial x}\left(\frac{\partial y}{\partial x}\right. \\
=\cos y
\end{array}
$$

Properties

- sum rule: $\frac{\partial(f+g)}{\partial y}=\frac{\partial f}{\partial y}+\frac{\partial g}{\partial y}$

$$
\begin{array}{r}
\text { scalar muir: } \frac{\partial(a f)}{\partial x}=a \frac{\partial f}{\partial x}, \\
\text { simnariy }: \frac{\partial(y F)}{\partial x}=y \frac{\partial f}{\partial x}
\end{array}
$$

- product rule: $\frac{\partial}{\partial x}(F \cdot g)=\frac{\partial F}{\partial z} \cdot g+f \cdot \frac{\partial g}{\partial z}$
(some if we mix up x, y, z)

Let $(a, b) \in D \subseteq \mathbb{R}^{2}$ and f def'd $\dot{\text { a diffiabr on } D} D$. $\frac{\text { Consicier }}{+h_{15}} g(t)=f(a, b+t)$
this is a one-var fen

$$
\frac{d a}{d t}=\frac{\partial F}{\partial y}(a, b+z)
$$

Intuitively why is $\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial^{2} f}{\partial y \partial x}$?

$$
\frac{\partial^{2} F}{\partial x^{\partial y}}=\frac{\partial}{\partial x}\left(\frac{\partial F}{\partial y}\right)=\frac{\partial}{\partial x}\left(\lim _{h \rightarrow 0} \frac{f(x, y+h)-f(x, y)}{h}\right)
$$

$$
\begin{aligned}
& \underset{\text { assume }}{=} \quad \lim _{n \rightarrow 0}\left(\frac{\partial}{\partial x}\left(\frac{f(x, y+h)-F(x, y)}{h}\right)\right) \\
& \text { we can } \\
& \text { Intrechongr } \\
& \begin{array}{l}
\text { derrative } \\
\text { ond lim }
\end{array} \\
& \frac{d}{d x}\left((a+n) x^{3}\right)=3(a+n) x^{2} \\
& \text { Notice } h \text { jy const wrt } x
\end{aligned}
$$

So

$$
\begin{aligned}
& \frac{\partial}{\partial x}\left(\frac{F(x, y+h)-f(x, y)}{h}\right) \\
&= \frac{\partial}{\partial x}\left(\frac{F(x, y+h)-F(x, y)}{h}\right) \\
&= \frac{\partial}{\partial x}(F(x, y+h))-\frac{\partial}{\partial x}(f(x, y)) \\
& h \\
&= \frac{\partial f}{\partial x}(x, y+h)-\frac{\partial F}{\partial x}(x, y)
\end{aligned}
$$

$$
\left.\begin{array}{rl}
s 0 \\
\frac{\partial^{2} F}{\partial x \partial y} & =\lim _{h \rightarrow 0}\left(\frac{\partial F}{\partial x}(x, y+h)-\frac{\partial F}{\partial x}(x, y)\right. \\
h
\end{array}\right)
$$

2.3 Tanget Planes

Reminder on tangent lines

$$
\begin{aligned}
& y=f(x) \\
& \frac{d F}{d x} \approx \frac{\Delta f}{\Delta x}=\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}} \\
& \Rightarrow f\left(x_{1}\right)-f\left(x_{0}\right) \approx\left(x_{1}-x_{0}\right) \frac{d f}{d x}\left(x_{0}\right) \\
& \Rightarrow F\left(x_{1}\right) \simeq F\left(x_{0}\right)+\frac{d F}{d x}\left(x_{0}\right) \cdot \Delta x \\
& \text { "lincor appoximation" } \\
& \text { be lif fix } x \text {. : le+ } x \text {, very, then: }
\end{aligned}
$$

$$
\begin{aligned}
& b c-1 f f_{1 x} x_{0}: 1 e+x_{1} \text { very, then: } \\
& f\left(x_{0}\right)+\Delta x_{0} \cdot \frac{d f}{d x}\left(x_{0}\right) \\
& =f\left(x_{0}\right)+\frac{d f}{d x}\left(x_{0}\right) \cdot\left(x_{1}-x_{0}\right)
\end{aligned}
$$

is a linear fund of x_{1} that's "approx $f\left(x_{1}\right)$
Approximation is best when x is close to x.
In other nerds, the line:

$$
y=f\left(x_{0}\right)+\frac{d f}{d x}\left(x_{0}\right) \cdot\left(x_{1}-x_{0}\right)
$$

where x. is $F_{1} x \in 0$! x varies
is best linear approximationtof near x. aka tan line θx 。

Idea given $f(x, y)$ and $\left(x, y y_{0}\right)$ in its domain, then the ten dione should be given by the linear fen of x : y that best approx. f(x,y) near (x_{0}, y_{0})
Say $\left(x_{1}, y_{1}\right)$ is near $\left(x_{0}, y_{0}\right)$.

$$
\begin{aligned}
& f\left(x_{1}, y_{1}\right) \approx f\left(x_{0}, y_{0}\right)+\Delta x \frac{\partial F}{\partial x}+\Delta y \frac{\partial f}{\partial y} \\
& \approx F\left(x_{0}, y_{0}\right)+\left(x_{1}-x_{0}\right) \frac{\partial F}{\partial x}\left(x_{0}, y_{0}\right)+\left(y_{1}-y_{0}\right) \frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)
\end{aligned}
$$

this is a linear fen of $x_{1}!y_{1}$
the Fund

$$
z=f\left(x_{0}, y_{0}\right)+\left(x_{1}-x_{0}\right) \frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)+\left(y_{1}-y_{0}\right) \frac{\partial f}{\partial y_{y}}\left(x_{0}, y_{0}\right)
$$

is a linear fen of x, y, (aka x, y) thai is a good approx to $f\left(x_{1}, y_{1}\right)$ when $\left(x_{1}, V_{1}\right)$ is near $\left(x_{0}, y_{-}\right)$

$$
\text { Notice } z=F\left(x_{0}, y_{0}\right)+\left(x-x_{-}\right) \frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)+\left(y-y_{0}\right) \frac{\partial F}{\partial y}\left(x_{0}, y_{0}\right)
$$

def's a Plane in R^{3}

$$
G 1+' s+n z+a n b\left(a n e+0 z=f(x, y) a+\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)\right.
$$

find tangent plane at $\left(x_{0}, y_{0}\right)=(1,2)$

$$
\begin{array}{r}
\text { Recall } \frac{\partial f}{\partial x}=y e^{x y} \\
\partial f
\end{array}
$$

$$
\begin{aligned}
& \partial x-1 \sim \\
& \frac{\partial f}{\partial y}=x e^{x y} \\
& \frac{\partial F}{\partial x}\left(x_{0}, y_{0}\right)=\frac{\partial F}{\partial x}(1,2) \\
& =2 e^{(1)(2)}=2 e^{2} \\
& \frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)=\frac{\partial f}{\partial y}(1,2)=c^{2} \\
& f\left(x_{0}, y_{y}\right)=e^{2}
\end{aligned}
$$

